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ABSTRACT 
A program has been developed for the derivation of empirical interatomic 

potentials, with particular regard to ionic materials and the use of shell models, 
incorporating two new methods of fitting. Concurrent fitting of multiple structures 
is found to enhance greatly the reliability of the derived potentials and can lead to 
a physically sensible 0-0 potential without the use of constraints. Inclusion of 
gas-phase cluster information appears to be beneficial even within an ionic model. 
By combining free-energy minimization with empirical fitting based on displace- 
ments, rather than gradients, it is now possible to determine interatomic potentials 
with correct treatment of thermal effects and the zero-point energy. 

5 1. INTRODUCTION 
The aim of this contribution is to highlight the recent progress made in the 

empirical derivation of interatomic potentials for applications in the solid state and 
to examine the future directions for improvement. Here we shall be specifically 
concerned only with ionic materials, and in particular oxides, as opposed to organics 
and semiconductor materials where empirical potential development is more 
advanced and has resulted in widely used parameterizations such as MM2 (Allinger 
1977) and valence force field (VFF) (Lifson and Stern 1982). This is aided by the 
factor that such systems are characterized primarily by regular geometries that 
largely conform to well defined concepts such as valence shell electron pair repulsion 
(VSEPR). Forces are predominantly local in their nature as a result of the high 
degree of covalency. For ionic systems the dominant factor is electrostatics, typically 
making a contribution to the energy an order of magnitude greater than the short- 
range forces. Hence a different approach is called for. 

The first modelling of ionic materials was done with empirical potentials in the 
form of the Born-Mayer and Born-Lande equations in which the short-range 
repulsive energy is a simple function of the nearest-neighbour distance. The ultimate 
in empirical modelling was, however, Kapustinskii’s (1956) equation which gives the 
lattice energy without even knowing the structure! 

Although there have been a number of innovations since this early work, much 
of the essence of the method remains unchanged, particularly in the choice of 
functional forms. One area, which is beyond the scope of this article, with potential 
for future development is the choice of model. Here we address the problem of 
obtaining the best parameters regardless of what particular functional form has 
been selected. 
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4 J. D. Gale 

8 2. FUNDAMENTAL CONSIDERATIONS OF EMPIRICAL FITTING 

Empirical fitting quite simply consists of a least-squares procedure, minimizing 
the difference between the observable and calculated properties: 

F = C [f(obs) -f(calc)]’. 

Properties consist of the crystal structure, which is a prerequisite for fitting, supple- 
mented by any of or all the following: elastic constants, high-frequency and static 
dielectric constants, lattice energy and piezoelectric constants. 

In theory we can use phonons; however, care is needed as the ordering of modes 
may change during fitting. Consequently when fitting phonons it is necessary to 
specify a reasonable approximation to the relevant eigenvector so that the frequencies 
for fitting can be selected on the basis of maximum overlap with each normal mode. 
One exception is in systems where there is one distinctive frequency well separated 
from other modes, such as a single hydroxyl group. 

One straightforward application of phonon fitting is to ensure that the structure 
that you are fitting is a minimum and not a higher-order stationary point. This can 
be achieved because at the gamma point the first three frequencies in ascending 
numerical order must be equal to zero for a genuine minimum. 

A principal limitation of empirical fitting is that, for many complex oxides, only 
the crystal structure is known accurately, via either powder X-ray or neutron refine- 
ment. Measurement of other properties often requires reasonably sized single crystals, 
particularly for elastic constants and phonons. In some cases even the structure 
cannot be readily used in fitting, particularly where the material is non-stoichiometric 
or contains impurities. Experimental lattice energies also have a high degree of 
uncertainty owing to the second electron affinity of oxygen. 

However, we cannot fully refine empirical potentials just based on a crystal 
structure as we shall obtain the answer that all our potential parameters with units 
of energy will tend to zero as this trivial solution gives zero gradients exactly, but 
this is not very useful! This problem can be circumnavigated by transferring a known 
potential from a different system, normally the oxygen-oxygen potential, or by fixing 
the charge state of the ions. By making these somewhat arbitrary choices we can no 
longer be certain that we shall obtain the truly optimum parameter set. 

Many ‘empirical’ potential sets have been derived for oxides to date (Lewis and 
Catlow 1985); however, the vast majority were obtained from the starting point of 
the oxygen-oxygen potential derived by Catlow (1977) which came from 
Hartree-Fock calculations on the interaction of two 0- ions. Hence there has not 
actually been a genuinely all empirical set of potentials for oxides until very recently 
(Bush, Gale, Catlow and Battle 1994). 

A second limitation of empirical fitting is that in terms of the energy against 
distance curve the above properties sample only the well depth, its position and its 
curvature. Hence extrapolation about the minimum is restricted to second-order 
quadratic accuracy. Fitted short-range potentials although they may act over a 
specified range are really influenced only by the first one or two shells of atoms and 
hence the potential is effectively sampled only at a small number of distances. Thus 
there is no guarantee that bulk-derived potentials are ideal for treatment of defects, 
such as interstitials or vacancies, or even for application to surfaces where there is 
substantial relaxation on cleavage. 

Theoretical methods are becoming increasingly important in deriving potentials, 
through fitting of energy hypersurfaces, because it supplies information about a 
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Empirical potential derivation for  ionic materials 5 

wider variety of separations, although there is the restriction that the self-consistent 
field may be readily convergent only within typically 20% of the equilibrium lattice 
parameter. There is a particular advantage to fitting energy hypersurfaces. In an 
empirical fit there are an infinite number of possible optimized potential sets resulting 
from the infinite number of choices of relative weighting factors for structural and 
curvature-related information. When utilizing an energy hypersurface no relative 
weighting factor is necessary unless we wish to improve the quality of the fit in a 
particular region of configuration space. 

In the past most of the theoretical potential derivations have been based on 
clusters; so the problem has been to deal with cluster termination effects and differ- 
ences in properties such as ionicity between the bulk and clusters. For example in 
the work of Van Beest, Kramer and van Santen (1990) after fitting to ab initio cluster 
models for aluminosilicates it was necessary to adjust empirically a number of 
parameters to achieve successful results for bulk calculations. These problems can 
now be overcome by using energy hypersurfaces obtained directly for the bulk 
material from programs such as CRYSTAL (Dovesi et al. 1988) as a starting point 
for potential derivation (Gale, Catlow and Mackrodt 1992). We shall demonstrate 
later that even potentials derived from a fully correlated relativistic quantum-mechan- 
ical method cannot be used in athermal simulations with the expectation of obtaining 
perfect agreement with experiment. 

We shall now review the models and approaches to empirical parameterization 
that have been used to date which lead naturally to the question of how we may 
further improve interatomic potential derivation in future. This work is the result of 
the experience that has been gained in fitting through the development of the program 
GULP (Gale 1992-1994) over the last few years and owes much to the suggestions 
of the users. The availability of an input-file-driven program for empirical fitting has 
greatly accelerated the process of potential derivation for oxides through the automa- 
tion of many procedures, which are to be documented in this article, combined with 
the inclusion of crystal symmetry to reduce the size of many problems. 

0 3. POTENTIAL MODELS 
Although the discussion of empirical fitting that will follow is generally applicable 

to many models, it is worth stating the model that will be used in many of the 
examples for clarity. The exact many-body energy may be decomposed into a series 
of terms containing the n-body components: 

E(1, ..., N ) = x E ( i ) + x E ( i , j ) +  E ( i , j , k ) +  E ( i , j , k , l ) +  . . . .  
i i , j  i , j &  i.j.k.1 

We shall assume that five-body and higher-order terms are negligible and sub- 
sequently neglect them. Of the remaining terms the two-body term is the dominant 
contribution to the binding energy and for ions i and j ,  with charges qi and q j ,  we 
can write the two-body energy as 

4 i 4 j  

r i j  
E(i , j )  = q i j ( r i j )  + --. 

The electrostatic term is only conditionally convergent in real space and is thus 
evaluated via a partial transformation into reciprocal space following the method 
developed by Ewald. The choice of real and reciprocal space cut-offs may be related 
to a single parameter q which can be defined as so to minimize the sum of the 
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6 J. D. Gale 

number of terms to be calculated in real and reciprocal space (Jackson and Catlow 
1988). Further refinement can be achieved by introducing a factor for the relative 
expense of calculation of the two types of term. The ‘short-range’ energy term is 
chosen to be a functional form that describes both the Pauli repulsion at short 
distances and the dispersive interaction at long range. For ionic materials this is 
generally chosen to take the form of a Buckingham potential: 

pij(rij) = A, exp ( - - 2) - - Cij 
r6. ‘ 

The only problem with the Buckingham potential is that the energy tends to 
minus infinity as the distance goes to zero; so the barrier must be sufficiently large 
that this region is inaccessible, particularly in molecular dynamics. This can be 
overcome by use of a four-range Buckingham, which also introduces a further degree 
of freedom by being able to specify the position of the energy minimum. 

Crucial to the success in modelling oxide materials is the use of a dipolar shell 
model which allows the polarization of ions in an electric field to be mimicked. This 
is particularly important for being able to fit dielectric properties and thus to calculate 
defect energetics. In the dipolar shell model due to Dick and Overhauser (1958) a 
massless shell, on which all pair potentials act, is coupled by a harmonic force to a 
core from which it is coulombically screened: 

E(core-shell) = iK,,r2. 

For partially covalent materials with regular coordination environments, such as 
silicate frameworks, three-body terms are normally included to introduce an energy 
penalty for deviation from tetrahedral coordination (Sanders, Leslie and Catlow 
1984). Similarly four-body terms may be added to stabilize planar coordination 
geometries. 

In theory the charges on the ions may be chosen, normally based on either an 
ab initio calculation or more approximate methods such as electronegativity equaliza- 
tion (Baekelandt, Mortier, Lievens and Schoonheydt 1991), or they can be regarded 
as fitable parameters. In practice it is far more convenient to assume formal charges 
as this makes a wider range of defect calculations possible, as defects will necessarily 
possess an integer charge, and also removes one degree of freedom. 

4 4. SIMULTANEOUS FITTING 
In conventional fitting, as has been widely used within this community in the 

past, we calculate the gradients and properties at the experimental crystal structure 
and vary the potential parameters to minimize the error in these calculated quantities, 
taking the experimental gradients to be zero at the observed atomic coordinates. 

A problem arises when using any form of shell model, be it dipolar or a breathing 
shell. Formally we can equate the core of an ion with the nucleus as it is assigned 
the atomic mass in dynamical calculations. Hence we know from a crystal structure 
the desired core positions to which we wish to fit, formally speaking provided that 
the diffraction data was obtained using neutrons. However, in the case of the shells 
we have no a priori information about where to place them, except in the rare case 
where the electron density has been determined precisely by crystallography and we 
can obtain the ion dipoles directly. In many cases the shells have been assumed to 
be coincident with the cores for early empirical potential fits, which is often true for 
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Empirical potential derivation for ionic materials 7 

high-symmetry crystallographic sites. For low-symmetry sites this is clearly an errone- 
ous assumption which, as it will be demonstrated later, leads to a poor quality of fit. 

There are two approaches to handling the general case in shell model fitting. 
Firstly we could perform an optical (shell-only) energy minimization at each point 
in the fitting procedure and calculate the residual sum of squares as before. 
Alternatively we could include the symmetry-reduced shell model coordinates, and 
radial parameters if appropriate, as variables in the fit so that they are adjusted to 
obtain the lowest possible sum of squares. The inclusion of the shell coordinates as 
fitted parameters is countered by adding an equal number of conditions that the 
corresponding gradients must be zero. Hence the inclusion of the shell model leads 
to no change in the difference between the number of observables and fitted 
parameters. 

These above two methods yield slightly different results if properties other than 
the crystal structure are included in the fit as in the first technique the shells are 
purely minimized with respect to the energy, whereas in the second case the shells 
are optimized in regard to the sum of the squares of the residuals. 

Experience in applying these two approaches suggests that the latter method is 
more readily convergent and computationally efficient. The ability to relax shells 
during potential derivation has been automated in the program GULP and has been 
given the name ‘simultaneous fitting’. 

One example of where simultaneous fitting has proved to be crucial is in determin- 
ing interatomic potentials for aluminophosphates. These materials also raise other 
questions, such as can we really expect the ionic model to handle unphysically large 
formal charge states as +5? Work on deriving potential parameters for berlinite 
(Gale and Henson 1994) suggests that a formally charged model is in fact feasible 
and performs as well as other more physical partially charged models (table 1 shows 
a comparison of calculated and experimental properties for berlinite). The shell 
model can allow the simulation of a significantly covalent material using an ionic 
model because of the similarity between polarization and covalency unless the 
electron density distribution is considered. In this example the dipolar shell model 
can subsume covalent effects because of the low symmetry at oxygen; however, for 
more regular stuctures a breathing shell would be necessary. 

Modelling of silicates within the ionic model employing formal charges is now 
well established (Catlow and Cormack 1987); however, earlier attempts to extend 
the scope of such calculations to their aluminophosphate analogues had proved 
unsuccessful because the cores and shells were concentric during fitting. In the case 
of berlinite, conventional fitting, in which the cores and shells are assumed to be 
coincident, gives a final sum of squares of 884977.0 whereas simultaneous fitting 
yields 2292, indicating that an improvement of several orders of magnitude may be 
achieved in extreme cases. This demonstrates that, for the shell model to be effective 
in subsuming errors in charge states, it is necessary to allow the core and shell to 
separate during fitting. 

5 5. TRANSFERABILITY OF EMPIRICAL POTENTIALS 
A successful potential model must be transferable to as many different structures 

as possible. If it only reproduces the structure to which it was fitted, then it is of 
little practical use. For empirical fitting, reliability and transferability can obviously 
be improved by including as much information as possible, although we are often 
restricted for solid-state simulations by the lack of non-structural data for many 
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8 J. D. Gale 

Table 1. Comparison of experimental and calculated structure and properties for berlinite. 

Experimental Gale and Henson (1994) Van Beest et al. (1990) 

E L  

4; 
4: 
dll (1012CN-1) 
dl4 (10”CN-’) 

4.942 3 
10.944 6 
0.466 5 
0.466 9 
0.416 1 
0292 2 
0.397 6 
0.415 3 
0.257 9 
0.883 5 

63.4 
2 3  
5.8 

-121 
55.8 
43.2 
30.6 
5.47 
5.37 
4.60 
4.48 

- 3.30 
1.62 

4.9109 
10.956 4 
0.467 0 
0469 8 
0.408 3 
0.289 1 
0.397 2 
0417 9 
0.260 0 
0.882 2 

81.8 
15.9 
22.2 

- 109 
106.7 
44.0 
32.9 
5-25 
5.42 
208 
2.11 

-2.30 
1.09 

4.999 1 
11.123 6 
0-464 7 
0.463 1 
0.433 4 
0294 4 
0.402 5 
0.422 2 
0.251 2 
0.889 3 

87.5 
13.0 
19.1 

- 12.4 
104.0 
48.8 
37.4 

1.92 
1.94 
1 .oo 
1.00 

- 1.57 
0.24 

compounds. Conversely, accurate information about gas-phase clusters is much 
more readily available from sources such as the JANAF tables or alternatively high- 
level quantum-mechanical calculations. This begs the question, can we simultan- 
eously fit both cluster and bulk material data, as has been done for systems such as 
silicon (Bolding and Andersen 1990), to obtain a common potential applicable to 
both? The ionicity will certainly differ between the two phases and, as the electro- 
statics are the dominant influence, this may preclude a combined fit within the 
ionic model. 

We shall consider the example of magnesium oxide here, it being the best- 
characterized oxide material, theoretically at least. In considering the ionicity we 
shall concern ourselves with Mulliken charges. This is not to say that these are 
uniquely correct, but they are the most widely reported and we are interested in 
making comparisons only. A large number of ab initio Hartree-Fock studies on 
clusters indicate that the Mulliken charges for the MgO diatomic molecule are close 
to +0.8 and - 0 8  for magnesium and oxygen respectively (Ziemann and Castleman 
1991). As the size of such clusters increases, so does the Mulliken population although 
the trend cannot be extrapolated to formal charges for infinite cluster size. 

At the other extreme, periodic Hartree-Fock (Causa, Dovesi, Pisani and Roetti 
1986) and local-density approximation (LDA) plane-wave pseudopotential calcula- 
tions (De Vita et al. 1992) indicate that the bulk solid is close to being fully ionic, 
although recent all-electron LDA calculations using Gaussian basis sets appear to 
disagree with this view (Birkenheuer, Boettger and Rosch 1994). The cluster limit 
and bulk results can be reconciled provided that the basis set exponents are reoptim- 
ized for each cluster size. For example, the standard 6-31G* basis set yields charges 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sy

dn
ey

] 
at

 0
5:

12
 1

4 
A

ug
us

t 2
01

3 



Empirical potential derivation for ionic materials 9 

of only A1.437 when used in a bulk Hartree-Fock calculation, whereas similar 
quality bulk-optimized basis sets yield much higher ionicities. 

On balance there would appear to be a significant change in ionicity on going 
from the diatomic to the bulk for MgO. We shall now examine whether this makes 
information from the two phases incompatible in a fitting procedure. Two fits have 
been performed; in the first the Mg-0 potential and shell model parameters are 
fitted to just the bulk structure, elastic and dielectric constants, while in the second 
the bond length and stretching frequency of the diatomic molecule are also fitted. 
In both cases the 0-0 short-range potential is held fixed at that obtained by Bush 
et al. (1994). 

The results of these two fits in terms of the potentials derived and quality of fit 
are shown in tables 2 and 3 respectively. Both sets of potentials perform similarly 
for the bulk material; however, for the diatomic species the bulk-only fit is clearly 
inadequate. Particularly surprising is that despite underestimating the MgO bond 
length the frequency is also only two thirds of the experimental value, whereas it 
might have been expected to be too high as a result. 

The difference in the potentials is primarily in the shell model parameters, and 
not the short range Mg-0 repulsion. In the bulk-only fit the core and shell are 
always concentric; so the spring constant only contributes to the on-diagonal ele- 
ments of the second-derivative matrix. Hence the shell model purely adsorbs errors 
in the calculated curvature-related properties. In the combined fit the shell model is 
fundamental in obtaining the correct diatomic molecule bond length as well making 
for a more reliable fit. 

Table 2. Potential parameters derived for magnesium oxide based on either only -bulk 
information or the combined use of gas phase and bulk data (potential cut-off, 12.0 A). 

Fit type Bulk only Bulk and gas phase 

2 053.405 
0.268 88 

0.693 7 
25.3 1 

32.32 
15.898 
- 2.000 0 

3.623 

2 143.768 
0.267 34 

0.693 7 
25.3 1 

32.32 
41.822 

2.129 
-2.394 5 

Table 3. Calculated observables for bulk and gas-phase diatomic magnesium oxide. 

Experiment Bulk only Bulk and gas phase 

Bulk 
a (A) 4.212 4.224 4.226 
c11 (-4 297 309.2 314.1 
Cl, ( G W  156 199-4 198.8 
E(: 1 9.86 11-38 11.69 
6: 2.96 2.96 231 

Clyiter 
r (4 1.672 1.550 1.647 
v (cm-') 902 593.2 901.3 
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10 J. D. Gale 

Comparison of the two oxygen-in-crystal polarizabilities with both theoretical 
estimates for MgO of 1426A3 (Fowler and Madden 1985) and experiment-based 
estimates of 1.689 A3 (Fowler and Pyper 1985) indicates that the inclusion of molecu- 
lar data enhances the parameterization of the shell model. It would appear from 
these preliminary results not only that is the combined fitting of cluster and bulk 
data possible, even for ionic oxides, but also that it is highly desirable. 

$6. RELAXED FITTING 
In the previous section we have demonstrated that the problem of the shell 

positions can be dealt with, but now we turn to address the question of how to 
improve the fitting process fundamentally. Practical experience has shown that, in 
conventional fitting, lowering the sum of squares is not a guarantee of better results 
when the potentials are actually applied to energy minimization. The main criterion 
used for deciding the accuracy of a potential model is normally not the forces at the 
experimental geometry, but instead the displacements of the optimized structure 
away from the experimental configuration. 

If the gradient vector is g and the Hessian matrix is H, then the displacements 
A that would occur on optimization, assuming the local energy surface is quadratic, 
will be given by 

h = H - ' g .  

Hence we could minimize the displacement vector with respect to the fitted para- 
meters in place of the gradients. However, in many cases the quadratic approximation 
is not sufficient and in some cases the Hessian may not even be positive definite; so 
we would have to include further tests to ensure that the fit is valid. 

There is also a second flaw in the conventional approach to fitting in that the 
curvature-related properties are only strictly calculable directly from the second- 
derivative matrix when the gradients are zero. Unless the fit to the structure is 
already perfect, then trying to reproduce elastic and dielectric constants at the 
experimental structure is far from ideal. 

Both of the above difficulties can be resolved by performing a full optimization 
of the structure with a subsequent property calculation for each point during the 
fitting procedure. This method, which has become known as 'relaxed' fitting, thus 
yields the exact displacements and genuine physical properties. 

A type of system for which relaxed fitting has been important is ferroelectric and 
piezoelectric materials, in which these properties depend on a subtle low-symmetry 
distortion away from the perovskite structure involving the off-centring of a cation 
leading to a net dipole within the unit cell. Previously fitting to these structures 
yielded models which on subsequent relaxation led to the regular high-symmetry 
form. 

Cherry, Islam and Catlow (1995) have managed to derive a potential set that 
correctly models the distorted structure of LaCrO, by use of relaxed fitting. The 
potentials for La-0 and 0-0 were taken from Bush et al. (1994) and only the 
Cr-0 potential was fitted, first by conventional and subsequently by relaxed fitting. 
In their work the static dielectric constant was fitted alongside the structure. As 
table 4 shows, the static dielectric constant is the most sensitive second-derivative 
property in distinguishing between the low- and high-symmetry configurations, the 
latter being a high-order stationary point possessing seven imaginary modes with 
three unique frequencies (3  x 149.51, 1 x 142% and 3 x 63.41 cm-'). 
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Empirical potential derivation for ionic materials 11 

Table 4. Comparison of the calculated structure and properties for LaCrO, at the minimum- 
energy and high-symmetry configurations based on the potentials of Cherry et a2. (1995). 

Optimized structure High symmetry Experiment 

5.528 
7.788 
5.508 
0.023 5 
0.998 2 
0.489 6 
0.040 2 

415 
511 
171 
194 
138 
133 

68.2 

5.502 
7.780 
5.502 
0.000 0 
0~000 0 
0.500 0 
0-000 0 

525 
525 
186 
186 
153 
153 

- 1025 

5476 
7.752 
5.512 
0.019 6 
0.995 4 
0.493 5 
0-067 6 
- 

- 
57.0 

In the past, fitting has tended to proceed in a sequential manner, in that structures 
were fitted one at a time and then the potentials obtained transferred to any 
subsequent mixed-cation structures. This approach suffers in that errors arising either 
from uncertainties in empirical data fitted or from limitations of the model being 
employed propagate in an uncontrolled fashion. As previous empirical parameteriz- 
ation studies in other areas have demonstrated, fitting to as many different structures 
as possible concurrently greatly improves the transferability of the fitted variables 
and minimizes the effects of errors in any particular piece of information. 

Recently Bush et al. (1994) have applied the combination of relaxed fitting and 
multiple structures to the problem of binary and ternary oxides. A wide range of 
binary oxides were concurrently fitted and the resulting interatomic potentials then 
applied to a number of ternary oxides with gratifying success with errors being 
typically less than 1%. 

As has been previously mentioned, most earlier work on oxides needed some 
theoretical input to fix the 0-0 potential as empirical fitting to one structure tends 
to yield nonsensical parameters as there is insufficient sampling of the 0-0 repulsion 
and the attractive dispersion term can become very large through being correlated 
to the repulsive potential. Of particular significance is that Bush et al. (1994) were 
able to obtain a genuinely empirical 0-0 potential having allowed it to fit without 
constraints. Furthermore the coefficients of the Buckingham potential are physically 
reasonable with the dispersion term of 32.32 eV A6 being close to the quantum- 
mechanical value of 36.1 eV A6 for 02- in magnesium oxide (Fowler 1990). 

The exponential repulsion term of the 0-0 potential turns out to be negligibly 
small in comparison with previous interatomic potentials. However, this is not 
necessarily surprising as the electrostatic repulsion, which will demonate the long- 
range force, already represents an upper bound for this component and the true 
short-range energy will not be sampled in a perfect oxide structure. 

Because of the interest in oxygen interstitials the exact nature of the 0-0 
potential at short distances is important, however. To try to assess the performance 
of different interatomic potentials we can turn to quantum-mechanical methods. We 
have considered the energy of an oxygen interstitial in alumina as a suitable case 
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12 J. D. Gale 

for comparison. It should be stressed that the aim of the exercise is to compare 
potentials and not to obtain an accurate energy for this defect. 

While we can readily perform a Mott-Littleton calculation to obtain defect 
energies based on pair potentials, we cannot yet perform an exact parallel quantum- 
mechanical calculation. Hence we have devised a system for which this is possible. 
A finite cluster of point charges have been created to mimic the bulk Madelung 
potential at and around the interstitial site. The oxygen ions surrounding the inter- 
stitial are included explicitly in the quantum-mechanical calculation which was 
performed using solid-state optimized triple-zeta basis sets with polarization func- 
tions and a MP2 correlation correction. The counterpoise method was used to 
determine the approximate basis set superposition error contribution. 

In the ionic model calculation, pair potentials likewise interact only between the 
interstitial ion and all the ions immediately surrounding this ion. No nuclear coordin- 
ates are optimized in the calculation; however, in the pair potential model an optical 
relaxation is performed to parallel the electronic polarization in the quantum study. 

The quantum-mechanical estimate of the energy of introduction of an oxygen 
dianion interstitial was 4.14 eV after all corrections. This is comparable with the 
value of 5.18 eV obtained from the widely used Catlow (1977) 0-0 potential. The 
potential of Bush et al. (1994) with minimal short-range 0-0 interaction is in 
remarkably good agreement with the quantum-mechanical result yielding a value of 
4.03 eV, further demonstrating that it is possible to obtain physically reasonable 
parameters by purely empirical means. 

97. BEYOND ATHf3IERMAL FITTING 
The vast majority of simulations performed on ionic materials to date have been 

athermal, in that the question of temperature is not explicitly considered. In practice, 
thermal effects are normally subsumed into the interatomic potentials through the 
experimental data that were used in the fitting procedure. The resulting potentials 
correspond to an effective temperature which is a weighted average of the temper- 
atures at which all the pieces of data were measured. Strictly speaking, the convolu- 
tion of thermal effects is valid only if all experimental quantities are measured at the 
same temperature. 

With the increasing desire to perform simulations in which the temperature is an 
explicitly specified variable it is necessary to abandon such athermal parameteriza- 
tions in future in favour of more rigorous treatments. This requires that interatomic 
potentials are derived by fitting to structures with each observable calculated at the 
temperature corresponding to the empirical data being employed. In turn this implies 
that properties and optimized structures must be calculated with the inclusion of 
thermal forces. 

There are several approaches to explicit inclusion of the temperature in simula- 
tions of which the most commonly employed for ionic materials are free-energy 
minimization and molecular dynamics. Fitting based on molecular dynamics is both 
impractical, because of the computational expense and the statistical uncertainties, 
and incorrect because of the neglect of quantum effects in the low-temperature region. 

Within the quasiharmonic approximation it is possible to calculate the free energy 
of a crystal based on the phonon contributions to the internal energy and entropy 
intregrated across the Brillouin zone. The internal pressure is given by the derivative 
of the Helmholtz free energy with respect to the cell volume. By isotropically 
expanding the unit cell the Gibbs free energy can be obtained at the point at which 
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Empirical potential derivation for ionic materials 13 

the externally applied pressure equals the phonon pressure. The free energy may 
then be minimized subject to the constraint on the pressure. This approach has been 
used in the study of silicates (Jackson, Parker and Tschaufeser 1992) although it has 
thus far been limited by having to use athermally derived interatomic potentials such 
that the effect of temperature is included twice over. 

Free-energy minimization may be readily used in conjunction with relaxed fitting 
to provide a means of fitting at finite temperatures and has been implemented within 
the program GULP. 

Often the effects of temperature are neglected as the thermal expansion coefficient 
is small. A class of materials where this approximation breaks down is for layered 
materials in which the layers are predominantly bound by only van der Waals forces. 
In such cases the cell parameters in one direction will be strongly temperature 
dependant. 

A preliminary investigation of the application of free-energy fitting to the layered 
hydroxides portlandite (Ca(OH),) and brucite (Mg(OH),), which adopt the hexa- 
gonal CdI, structure, has been performed. The room-temperature crystal structures 
for both materials and the elastic constants for Ca(OH), were fitted using a minimal 
shrinking factor of two within the Monkhorst-Pack ( 1976) special points scheme, 
resulting in the parameters given in table 5. Work is currently in progress to examine 
the effect of increasing the density of the integration mesh. 

In table 6 the experimental data are compared with those calculated at  0 and 
298 K, and also the result of a conventional athermal energy minimization. The 
results for the free-energy minimization at absolute zero and the internal-energy 
minimization differ owing to the contribution of the zero-point vibrations, both to 
the energy and to the gradients. It is clear that the neglect of zero-point effects can 
lead to significant errors, in these examples by up to 0.1 A in the cell parameters, 
and must be taken into consideration when comparing quantum-mechanically optim- 
ized bulk geometries with experimental data extrapolated to absolute zero. 

The thermal expansion coefficients for the cell parameters of the two minerals 
have been determined by performing free-energy minimizations up to 600 K. As 
would be expected, the thermal expansion coefficients for the c parameters of 
1.42 x lo-* and 1.99 x lOP4AK- '  for portlandite and brucite respectively are an 
order of magnitude greater than those for the a parameter. These values represent 
the best linear fit to the data up to 600K; however, the curves are found to be 
significantly quadratic. An interesting feature of the thermal expansion is that for 
brucite, containing layers of the smaller Mg2+ cations, the structure actually contracts 
in the a-b plane up to about 200 K. 

One deficiency of the present model is that, while the hydroxyl stretching frequen- 
cies are in good agreement with those measured experimentally for brucite, allowing 
for anharmonic corrections, those for portlandite are significantly in error. Inclusion 
of the frequencies in the fitting procedure may improve this aspect. However, the 
model is qualitatively correct in reproducing the decrease in the stretching frequencies 
with the application of pressure (Kruger, Williams and Jeanloz 1989). 

A limitation to the application of free-energy minimization to empirical fitting 
so far has been the need to calculate the first and second derivatives of the dynamical 
matrix. So far numerical differentiation has primarily been used, although this suffers 
from being computationally expensive and inherently less accurate. The introduction 
of analytical derivatives in the future based on either moment expansions (Montroll 
1942) or perturbation theory will enable fitting with explicit inclusion of temperature 
to become a routine technique. 
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Empirical potential derivation for ionic materials 15 

Table 6. Comparison of experimental and calculated structure and properties for Ca(OH), 
and Mg(OH)2. 

Experimental 298 K OK A thermal 

3.592 
4.906 
0.234 0 
0.425 6 

3618 
3644 

99.3 
36.2 
29.7 
32.6 
9.8 

31.6 

3.142 
4.766 
0.221 6 
0.430 3 

3655 
3700 

3.612 
4.933 
0.240 0 
0434 5 

3708 
3737 

123.1 
37.7 
8.2 

29.3 
10.4 
42.7 

3.149 
4.748 
0.2194 
0.422 3 

3669 
3693 

3.607 
4.900 
0.241 5 
0.437 3 

3702 
3735 

125.4 
38.8 
9.6 

32.6 
11.3 
43.3 

3.149 
4.709 
0.220 9 
0425 6 

3662 
3691 

3.595 
4.845 
0.244 1 
0.442 3 

3694 
3732 

129.9 
41.1 
12.2 
38.5 
13.2 
44.4 

3.141 
4.61 1 
0.224 8 
0.434 0 

3641 
3687 

Theoretically derived interatomic potentials are implicitly at absolute zero and 
thus require the use of free-energy minimization to correct for zero-point energy 
effects and thermal expansion if their results are to be compared with experiment. 

An alternative approach can be taken to understanding the influence of phonon 
and thermal effects. When we calculate the energy for a given set of nuclear positions 
using an interatomic potential, we are not normally calculating an instantaneous 
energy as would be obtained from a quantum-mechanical calculation. The energy 
and properties calculated are more commonly a mean field average over the vibra- 
tional motions about the nuclear positions, even at absolute zero. If we assume that 
there is a Gaussian probability distribution for each atom about its mean position, 
then the relationship between the effective pair potential pi j  and the potential dij 
that would be obtained theoretically is 

O - (?>’i’ 1 exp [ -a i ( r i  - r?)’] exp [-crj(rj - rq)’] #ij(rij)dridrj. s Vij(rij) - 

This is the basis of a further method for performing free-energy calculations in which 
the Gaussian exponent coefficients c1 are treated as variational parameters (LeSar, 
Najafabadi and Srolovitz 1991). 

Both empirical and theoretical potentials must take proper account of zero-point 
and thermal effects if we are to perform more accurate temperature-dependent 
simulations in future. 

8 8. POTENTIAL DERIVATION FOR COMPLEX SYSTEMS 
As the complexity of the systems of interest increases, so does the number of 

interatomic potentials to be determined. Difficulties abound in that many potential 
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16 J. D. Gale 

parameters may be highly correlated and hence choices need to be made about 
which species should have a non-Coulombic interaction or where three-body poten- 
tials should be used. For example a given triad of atoms can be treated by three 
two-body potentials or two two-body potentials and one three-body potential. 

There is also a danger that, when trying to fit several new potentials at once, we 
could have chosen a set of initial variables which reside in a local minimum in 
parameter space which is not the global minimum. One approach to this problem 
is to try either a stochastic sampling method, such as Monte Carlo methods, or a 
technique which can overcome local barriers, for example simulated annealing via 
molecular dynamics, as a precursor to the normal least-squares procedure. 

Stochastic approaches are probably favourable here as this eliminates the need 
to invent fictious masses and will allow a more rapid and wider search of parameter 
space to be performed. Some studies have suggested that genetic algorithms can be 
superior to Monte Carlo techniques for locating local minima (Gallagher, Sambridge 
and Drijkoningen 1991). 

An alternative approach to improving the fitting of complex systems is to combine 
the benefits of both theoretical and empirical methods. This is illustrated by the 
work of Rohl and Gale (1995) on the modelling of solids containing molecular ions. 
As an example we shall consider the alkali-metal and alkaline-earth sulphates. 

A full theoretical determination of interatomic potentials based on periodic 
ab initio methods for the aforementioned sulphates would be time consuming, as 
there are many technical factors relating to the accuracy that must be considered in 
both Hartree-Fock and density functional approaches, such as basis set optimization, 
plane-wave cut-off, correlation corrections, non-local functionals and pseudo- 
potential derivation. Likewise a purely empirical potential derivation is hindered 
by the need to handle both intramolecular potentials for the sulphate group and 
interspecies potentials. 

Intramolecular potentials for the sulphate group as an isolated species can be 
readily obtained from molecular quantum-mechanical calculations where the size of 
the basis set and the method of treatment of both the exchange and the correlation 
energies can be readily extended to high accuracy. In practice, this is not necessary 
as some of the potential parameters have to be empirically corrected in the final 
refinement anyway to allow for changes induced by the crystalline environment. In 
the case in question, MP2/6-31G* calculations were used for the cluster energy as 
the incompleteness in both the basis set and the correlation level leads to a partial 
cancellation of errors. The effect of the crystalline environment is partially accounted 
for in the molecular energy surface determination by embedding the ion in a point- 
charge array such that the system is charge neutral. Deformations of the sulphate 
ion corresponding to both the symmetric and asymmetric stretch within the point 
group Czv were used to fit a Morse potential for the S - 0  bond, while a three-body 
term was used to fit the bending modes. The charge distribution obtained from the 
Mulliken analysis for the cluster calculation was used to assign partial charges of 
+1.36 and -0.84 for sulphur and oxygen respectively within the sulphate ions, 
although all intramolecular interactions were Coulomb subtracted. 

Having obtained an initial set of parameters for the sulphate ion theoretically, 
the metal-sulphate and 0-0 intermolecular potentials were then obtained by empir- 
ical refinement. The resulting potentials (table 7) prove to be reliable across a wide 
range of sulphates for both structural and elastic properties as demonstrated in 
table 8 for a number of examples. Although the sulphate potentials eventually became 
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18 J. D. Gale 

Table 8. Calculated and experimental structure and properties for selected metal sulphates. 

Compound Observable Experiment Calculated 

BaSO, a (4) 8.884 8.888 
b (4) 5.456 5.47 1 
c (A) 7.157 7.143 

c11 (GPa) 95.1 101.6 
cz2 (GP4 83.6 87.6 
c33 (GPa) 110.6 117.7 
c 4 4  (GPa) 18.1 16.2 
c 5 5  (GP4 29.0 35.0 
c66 (GPa) 27.7 28.5 
Cl2 (GPa) 51.3 44.2 
c13 (GPa) 33.6 27.9 
c23 (qpa) 32.8 29.6 

CaSO, a (4) 6.993 6.896 
b (4) 6.245 6.332 
c (4) 6.995 7.0 18 

NazS04 a (4) 9.829 9.763 
b (4) 12.302 12.303 
c (A) 5.868 5.962 

c11 (GPa) 67.4 65.3 
c 2 2  (GPa) 105.0 103.3 
c331 (GPa) 804 74.4 
c44 (GPa) 23.6 227 
c55 ( G W  18.0 13.5 
c66 (qpa) 14.8 13.9 

K2'g2(S04)3 a (A) 10.03 1 9.919 

partially empiricized, having a physically reasonable starting point for some of the 
potential parameters makes the fit much more tractable and less likely to yield an 
incorrect local minimum during the least-squares procedure, with minimal 
computational expense. 

5 9. CONCLUSIONS 
Despite the advances in the accuracy of the theoretical treatment of solids in 

recent years, it is likely that empirical methods of interatomic potential derivation 
will remain important for some time to come. In order to model many ionic systems 
reliably, it is necessary to use a dipolar shell model and in many cases a quadrupolar 
shell model is desirable. It has been shown that the simultaneous optimization of 
shell parameters during fitting is essential. 

Empirical fitting based on displacements of the energy-minimized configuration 
from the experimental structure is found to be superior to conventional fitting in 
which zero gradients at  the experimental geometry is the aim, once a reasonable 
initial set of potential parameters has been generated such that optimizations are 
convergent. The relaxed fitting approach appears to be particularly appropriate for 
the modelling of low-symmetry structures. 

In order to obtain empirical potentials for use in dynamical simulations, it is 
important that proper regard is paid to the temperature at  which the experimental 
data were measured. Free-energy methods based on lattice dynamics offer the most 
convenient method for fitting at finite temperatures and this is a direction that must 
be explored further in the future to improve the reliability of empirical methods. 
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